

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to contribute to the DRS GA4GH Schema

Thank you for taking the time to contribute. We appreciate it!

The GA4GH DRS schema defines an API for sharing data.

There are two ways to contribute to the effort - via issues, which are
used for discussion, and pull requests, which are concrete proposals of
change.

Issues

The project’s Issues
Page [https://github.com/ga4gh/data-repository-service-schemas/issues] is a forum to
discuss both major and minor issues related to developing the standards,
formats, and APIs. It also serves as the means for collaborating with
the group and discussing contributions that will ultimately lead to
changes to the formats and APIs. See the Issue
section below for specifics on how issues are resolved by the community.
Examples of the type of issues that can be submitted are:

	Identify use cases that will shape the standards and APIs

	How to add or delete objects and/or object attributes

	How a particular attribute should be defined

	Report bugs you encounter when using the reference implementations

Pull Requests

The way to contribute development effort and code to the project is via
GitHub pull requests. GitHub provides a nice overview on how to create
a pull
request [https://help.github.com/articles/creating-a-pull-request].
Contributions typically require pull requests to each of the schemas,
server and compliance repositories, although pull requests to the server
may merely improve the code without affecting the API, and therefore
changing the schemas or compliance tests. A set of branches across the
repositories each with the same name is a branch set, e.g. the master
branch in each repository forms the master branch set.

Some general rules to follow:

	Create an issue in Github to track your work and start a conversation. Make a note of the number, you’ll
need it when naming your feature branch below.

	We follow HubFlow [https://datasift.github.io/gitflow/] which means we use
a feature branch strategy with pull requests always going to develop
and releases happening from master. Please read the HubFlow guide linked above, it’s a quick read and will give you a really good idea of how our branches work. Do not make pull requests to master!

	If you are a core developer with write access to the repo, make a feature
branch following HubFlow conventions in the repo (see next step). Otherwise
fork [https://help.github.com/articles/fork-a-repo] the repo into your personal GitHub space to work on.

	Create a “feature” branch for each update that you’re working on (either in the main repo or your fork depending
on the previous step). These branches should start with “feature/issue-[number]-[some-description]”. For example
“feature/issue-123-improving-the-docs”. Most devs will use the HubFlow command line tools to do this however, if you
make a feature branch in GitHub’s UI, then please make sure you follow this naming convention.

	If you are creating a feature branch in the main repo and you follow this
convention nice things will happen e.g. TravisCI will check your branch and the documentation and swagger will be built
for you, see the README.md for how to construct a URL to view these for your feature branch.

	When you’re happy with your feature branch, make a Pull Request [https://help.github.com/articles/about-pull-requests/]
in GitHub from your feature branch (or fork with a feature branch) to develop. Pick at least one other person to review
and write up a good message that links back to the issue you started this whole process with.

	If you have multiple related pull requests, coordinate pull requests across the branch set by making them as
simultaneously as possible, and cross referencing
them [http://stackoverflow.com/questions/23019608/github-commit-syntax-to-link-a-pull-request-issue].

	Keep your pull requests as small as possible. Large pull requests
are hard to review. Try to break up your changes into self-contained
and incremental pull requests.

	The first line of commit messages should be a short (<80
character) summary, followed by an empty line and then any details
that you want to share about the commit.

	Please try to follow the existing syntax style

When you submit or change your pull request, the Travis build system
will automatically run tests to ensure valid schema syntax. If your pull
request fails to pass tests, review the test log, make changes and then
push them to your feature branch to be tested again.

Builds with Travis-CI

We use Travis for CI testing. If you create a fork and feature branch
this will not automatically be built from our Travis. However, if you
are a developer and have created a feature branch following the naming
convention above, you should see automated builds.

Check https://travis-ci.org/ga4gh/data-repository-service-schemas/builds to see the status of the builds.

Pull Request Voting Process

DRS is very much focused on meeting the needs of our Driver Projects
so this voting process is focused on their needs.

	We always have an issue created before a PR, this is where a description and initial conversation takes place

	Someone is assigned the ticket, they bring together one (or more) pull requests… they might do it themselves or ask for help. Multiple pull requests could be used if there are different approaches that need to be explored

	David, Brian, and Rishi review the PRs every week on the call (and also ping the mailing list), set a deadline by which drivers (and a few key non-drivers) need to respond with a +1, 0, or -1 by. A non-vote means 0 so neutral. We try for no “-1”s. Strive to reach consensus with our drivers. We ask that a -1 give us details why.

	David and Brian as Work Stream leads retain a veto if something goes off the rails

	We merge or discard depending on the vote/veto by the date we set when the PR was shared with the group

Driver Projects who we will ask to vote on PRs:

Pressing Need:

	AGHA

	ELIXIR

	Genomics England

	HCA

	TOPMed

Fast Follow:

	CanDIG

	ClinGen

	ENA/EGA/EVA

	ICGC ARGO

	NCI DCF

	NIH All of Us

The named key voting implementors are:

	@ddietterich from Verily Data Repo

	@sarpera from Seven Bridges Genomics

	@delagoya from Illumina

Syntax Style and Conventions

The current code conventions for the source files are as follows:

	Follow the protocol buffers style
guide [https://developers.google.com/protocol-buffers/docs/style]

	Use two-space indentation, and no tabs.

	Hard-wrap code to 80 characters per line.

	Comments may use
reStructuredText [http://docutils.sourceforge.net/rst.html]
mark up.

Documentation

The goal of GA4GH is to define an interoperable API specification. To
achieve this, the intent, rationale, and semantics of all Data Objects
and operations need to be clearly and precisely defined. Decisions that
are not captured in documentation are lost.

All schemas defined in GA4GH must include normative documentation. This
should consist of overview and design documentation as well as
documentation in the schemas. This documentation should explain the
goals, overall design, and rationale for decisions that were made. It
must be addressed to both client and server developer audiences. It may
cite published papers or stable web documentation.

Overview documentation should be in markdown format
in the docs/asciidoc/ directory. This format was chosen for
inclusion in documentation build system that is under
development. Graphics are encouraged and should have a source to
drawings in SVG format that will be converted to PNG by the
documentation build.

Our documentation build system is a work in progress and may change. For
much more information on this see DOCSBUILD.md.

Releases

From time to time the group will make a release, this is done with the HubFlow
release process which generally involves creating a branch
“release-foo”, where foo is the release name. And following the HubFlow
tooling for pushing this to master/develop and taggging in GitHub.
Only bug fixes are allowed
to the release branch and the release branch is removed after a successful HubFlow release.

Documentation Build Process

This doc outlines the build process for OpenAPI and HTML docs (in Travis CI) and subsequent deployment to GitHub Pages.

These instructions are based on best practices for using gh-openapi-docs, which includes:

	When code is merged into the master branch of this repository, artifacts are created and hosted at the following paths:

	ga4gh.github.io/[repo]/docs/ — reference docs for the API

	ga4gh.github.io/[repo]/openapi.json — API spec in JSON format

	ga4gh.github.io/[repo]/openapi.yaml — API spec in YAML format

	For non-master branches, reviewers can preview documentation and other pages under “ga4gh.github.io/[repo]/preview/[branch-name]/”

	docs/ — docs preview for current version of [branch-name]

	openapi.json — spec (JSON) preview for current version of [branch-name]

	openapi.yaml — spec (YAML) preview for current version of [branch-name]

	When changes are pushed to branches on a fork of the main repo (and the user has set up Travis for their forked repo), the same path apply but should be relative to “[user-or-org].github.io/[repo]/”.

Reference docs with gh-openapi-docs

This repo uses the gh-openapi-docs (Github [https://github.com/ga4gh/gh-openapi-docs], npm [https://www.npmjs.com/package/@ga4gh/gh-openapi-docs]) command to automatically generate human-readable HTML pages from the OpenAPI specification.

You’ll need nodejs, npm, openapi-cli, redoc-cli, and gh-openapi-docs installed on your machine to build documentation locally. See the README [https://github.com/ga4gh/gh-openapi-docs] for instructions on installing the gh-openapi-docs tool in general, and .travis.yml for how the tool has been specifically installed for DRS.

 [image: GA4GH Logo]
Data Repository Service (DRS) API

develop branch status: [image: https://travis-ci.org/ga4gh/data-repository-service-schemas.svg?branch=develop]Build Status [https://travis-ci.org/ga4gh/data-repository-service-schemas?branch=develop]
[image: Swagger Validator]

 Making DRS Requests

Making DRS Requests

The DRS implementation is responsible for defining and enforcing an authorization policy that determines which users are allowed to make which requests. GA4GH recommends that DRS implementations use an OAuth 2.0 bearer token [https://oauth.net/2/bearer-tokens/] or a GA4GH Passport [https://github.com/ga4gh-duri/ga4gh-duri.github.io/tree/master/researcher_ids], although they can choose other mechanisms if appropriate.

Fetching DRS Objects

The DRS API allows implementers to support a variety of different content access policies, depending on what AccessMethod records they return. Implementers have a choice to make the
GET /objects/{object_id} and GET /objects/{object_id}/access/{access_id} calls open or requiring a Basic, Bearer, or Passport token (Passport requiring a POST). The following describes the
various access approaches following a successful GET/POST /objects/{object_id} request in order to them obtain access to the bytes for a given object ID/access ID:

	public content:

	server provides an access_url with a url and no headers

	caller fetches the object bytes without providing any auth info

	private content that requires the caller to have out-of-band auth knowledge (e.g. service account credentials):

	server provides an access_url with a url and no headers

	caller fetches the object bytes, passing the auth info they obtained out-of-band

	private content that requires the caller to pass an Authorization token:

	server provides an access_url with a url and headers

	caller fetches the object bytes, passing auth info via the specified header(s)

	private content that uses an expensive-to-generate auth mechanism (e.g. a signed URL):

	server provides an access_id

	caller passes the access_id to the /access endpoint

	server provides an access_url with the generated mechanism (e.g. a signed URL in the url field)

	caller fetches the object bytes from the url (passing auth info from the specified headers, if any)

In the approaches above GA4GH Passports [https://github.com/ga4gh-duri/ga4gh-duri.github.io/tree/master/researcher_ids] are not mentioned and that is on purpose. A DRS server may return a Bearer token or other platform-specific token in a header in response to a valid Bearer token or GA4GH Passport (Option 3 above). But it is not the responsibility of a DRS server to return a Passport, that is the responsibility of a Passport Broker and outside the scope of DRS.

DRS implementers should ensure their solutions restrict access to targets as much as possible, detect attempts to exploit through log monitoring, and they are prepared to take action if an exploit in their DRS implementation is detected.

Authentication

Discovery

The APIs to fetch DrsObjects and AccessURLs may require authorization. The authorization mode may vary between DRS objects hosted by a service. The authorization mode may vary between the APIs to fetch a DrsObject and an associated AccessURL. Implementers should indicate how to authenticate to fetch a DrsObject by implementing the OptionsOjbect API. Implementers should indicate how to authenticate to fetch an AccessURL within a DrsObject.

Modes

BasicAuth

A valid authorization token must be passed in the ‘Authorization’ header, e.g. “Basic ${token_string}”

Security Scheme Type	HTTP
———————-	——
HTTP Authorization Scheme	basic

BearerAuth

A valid authorization token must be passed in the ‘Authorization’ header, e.g. “Bearer ${token_string}”

Security Scheme Type	HTTP
———————-	——
HTTP Authorization Scheme	bearer

PassportAuth

A valid authorization GA4GH Passport [https://github.com/ga4gh-duri/ga4gh-duri.github.io/tree/master/researcher_ids] token must be passed in the body of a POST request

Security Scheme Type	HTTP
———————-	——
HTTP POST	tokens[]

 Design Motivation

Design Motivation

DRS URIs are aligned with the FAIR data principles [https://www.nature.com/articles/sdata201618] and the Joint Declaration of Data Citation Principles [https://www.nature.com/articles/sdata20182] — both hostname-based and compact identifier-based URIs provide globally unique, machine-resolvable, persistent identifiers for data.

	We require all URIs to begin with drs:// as a signal to humans and systems consuming these URIs that the response they will ultimately receive, after transforming the URI to a fetchable URL, will be a DRS JSON packet. This signal differentiates DRS URIs from the wide variety of other entities (HTML documents, PDFs, ontology notes, etc.) that can be represented by compact identifiers.

	We support hostname-based URIs because of their simplicity and efficiency for server and client implementers.

	We support compact identifier-based URIs, and the meta-resolver services of identifiers.org and n2t.net (Name-to-Thing), because of the wide adoption of compact identifiers in the research community. as detailed by Wimalaratne et al (2018) [https://www.nature.com/articles/sdata201829] in “Uniform resolution of compact identifiers for biomedical data.”

 Registering a DRS Server on a Meta-Resolver

 Note: Identifiers.org/n2t.net API Changes

The examples below show the current API interactions with n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] which may change over time. Please refer to the documentation from each site for the most up-to-date information. We will make best efforts to keep the DRS specification current but DRS clients MUST maintain their ability to use either the identifiers.org or n2t.net APIs to resolve compact identifier-based DRS URIs.

Registering a DRS Server on a Meta-Resolver

See the documentation on the n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] meta-resolvers for adding your own compact identifier type and registering your DRS server as a resolver. You can register new prefixes (or mirrors by adding resource provider codes) for free using a simple online form. For more information see More Background on Compact Identifiers.

Calling Meta-Resolver APIs for Compact Identifier-Based DRS URIs

Clients resolving Compact Identifier-based URIs need to convert a prefix (e.g. “drs.42”) into a URL pattern. They can do so by calling either the identifiers.org or the n2t.net API, since the two meta-resolvers keep their mapping databases in sync.

Calling the identifiers.org API as a Client

It takes two API calls to get the URL pattern.

	The client makes a GET request to identifiers.org to find information about the prefix:

GET https://registry.api.identifiers.org/restApi/namespaces/search/findByPrefix?prefix=drs.42

This request returns a JSON structure including various URLs containing an embedded namespace id, such as:

"namespace" : {
 "href":"https://registry.api.identifiers.org/restApi/namespaces/1234"
}

	The client extracts the namespace id (in this example 1234), and uses it to make a second GET request to identifiers.org to find information about the namespace:

GET https://registry.api.identifiers.org/restApi/resources/search/findAllByNamespaceId?id=1234

This request returns a JSON structure including an urlPattern field, whose value is a URL pattern containing a ${id} parameter, such as:

"urlPattern" : "https://drs.myexample.org/ga4gh/drs/v1/objects/{$id}"

Calling the n2t.net API as a Client

It takes one API call to get the URL pattern.

The client makes a GET request to n2t.net to find information about the namespace. (Note the trailing colon.)

GET https://n2t.net/drs.42:

This request returns a text structure including a redirect field, whose value is a URL pattern containing an $id parameter, such as:

redirect: https://drs.myexample.org/ga4gh/drs/v1/objects/$id

Caching with Compact Identifiers

Identifiers.org/n2t.net compact identifier resolver records do not change frequently. This reality is useful for caching resolver records and their URL patterns for performance reasons. Builders of systems that use compact identifier-based DRS URIs should cache prefix resolver records from identifiers.org/n2t.net and occasionally refresh the records (such as every 24 hours). This approach will reduce the burden on these community services since we anticipate many DRS URIs will be regularly resolved in workflow systems. Alternatively, system builders may decide to directly mirror the registries themselves, instructions are provided on the identifiers.org/n2t.net websites.

Security with Compact Identifiers

As mentioned earlier, identifiers.org/n2t.net performs some basic verification of new prefixes and provider code mirror registrations on their sites. However, builders of systems that consume and resolve DRS URIs may have certain security compliance requirements and regulations that prohibit relying on an external site for resolving compact identifiers. In this case, systems under these security and compliance constraints may wish to whitelist certain compact identifier resolvers and/or vet records from identifiers.org/n2t.net before enabling in their systems.

Accession Encoding to Valid DRS IDs

The compact identifier format used by identifiers.org/n2t.net does not percent-encode reserved URI characters but, instead, relies on the first “:” character to separate prefix from accession. Since these accessions can contain any characters, and characters like “/” will interfere with DRS API calls, you must percent encode the accessions extracted from DRS compact identifier-based URIs when using as DRS IDs in subsequent DRS GET requests. An easy way for a DRS client to handle this is to get the initial DRS object JSON response from whatever redirects the compact identifier resolves to, then look for the self_uri in the JSON, which will give you the correctly percent-encoded DRS ID for subsequent DRS API calls such as the access method.

Additional Examples

For additional examples, see the document More Background on Compact Identifiers.

 DRS IDs

DRS IDs

Each implementation of DRS can choose its own id scheme, as long as it follows these guidelines:

	DRS IDs are strings made up of uppercase and lowercase letters, decimal digits, hyphen, period, underscore and tilde [A-Za-z0-9.-_~]. See RFC 3986 § 2.3 [https://datatracker.ietf.org/doc/html/rfc3986#section-2.3].

	DRS IDs can contain other characters, but they MUST be encoded into valid DRS IDs whenever they are used in API calls. This is because non-encoded IDs may interfere with the interpretation of the objects/{id}/access endpoint. To overcome this limitation use percent-encoding of the ID, see RFC 3986 § 2.4 [https://datatracker.ietf.org/doc/html/rfc3986#section-2.4]

	One DRS ID MUST always return the same object data (or, in the case of a collection, the same set of objects). This constraint aids with reproducibility.

	DRS implementations MAY have more than one ID that maps to the same object.

	DRS version 1.x does NOT support semantics around multiple versions of an object. (For example, there’s no notion of “get latest version” or “list all versions”.) Individual implementations MAY choose an ID scheme that includes version hints.

DRS URIs

For convenience, including when passing content references to a WES server [https://github.com/ga4gh/workflow-execution-service-schemas], we define a URI scheme [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Generic_syntax] for DRS-accessible content. This section documents the syntax of DRS URIs, and the rules clients follow for translating a DRS URI into a URL that they use for making the DRS API calls described in this spec.

There are two styles of DRS URIs, Hostname-based and Compact Identifier-based, both using the drs:// URI scheme. DRS servers may choose either style when exposing references to their content;. DRS clients MUST support resolving both styles.

Tip:

See Appendix: Background Notes on DRS URIs for more information on our design motivations for DRS URIs.

Hostname-based DRS URIs

Hostname-based DRS URIs are simpler than compact identifier-based URIs. They contain the DRS server name and the DRS ID only and can be converted directly into a fetchable URL based on a simple rule. They take the form:

drs://<hostname>/<id>

DRS URIs of this form mean “you can fetch the content with DRS id <id> from the DRS server at <hostname>”.
For example, here are the client resolution steps if the URI is:

drs://drs.example.org/314159

	The client parses the string to extract the hostname of “drs.example.org” and the id of “314159”.

	The client makes a GET request to the DRS server, using the standard DRS URL syntax:

GET https://drs.example.org/ga4gh/drs/v1/objects/314159

The protocol is always https and the port is always the standard 443 SSL port. It is invalid to include a different port in a DRS hostname-based URI.

Tip:

See the Appendix: Hostname-Based URIs for information on how hostname-based DRS URI resolution to URLs is likely to change in the future, when the DRS v2 major release happens.

Compact Identifier-based DRS URIs

Compact Identifier-based DRS URIs use resolver registry services (specifically, identifiers.org [https://identifiers.org/] and n2t.net (Name-To-Thing) [https://n2t.net/]) to provide a layer of indirection between the DRS URI and the DRS server name — the actual DNS name of the DRS server is not present in the URI. This approach is based on the Joint Declaration of Data Citation Principles as detailed by Wimalaratne et al (2018) [https://www.nature.com/articles/sdata201829].

For more information, see the document More Background on Compact Identifiers.

Compact Identifiers take the form:

drs://[provider_code/]namespace:accession

Together, provider code and the namespace are referred to as the prefix. The provider code is optional and is used by identifiers.org/n2t.net for compact identifier resolver mirrors. Both the provider_code and namespace disallow spaces or punctuation, only lowercase alphanumerical characters, underscores and dots are allowed (e.g. [A-Za-z0-9._]).

Tip:

See the Appendix: Compact Identifier-Based URIs for more background on Compact Identifiers and resolver registry services like identifiers.org/n2t.net (aka meta-resolvers), how to register prefixes, possible caching strategies, and security considerations.

For DRS Servers

If your DRS implementation will issue DRS URIs based on your own compact identifiers, you MUST first register a new prefix with identifiers.org (which is automatically mirrored to n2t.net). You will also need to include a provider resolver resource in this registration which links the prefix to your DRS server, so that DRS clients can get sufficient information to make a successful DRS GET request. For clarity, we recommend you choose a namespace beginning with drs.

For DRS Clients

A DRS client parses the DRS URI compact identifier components to extract the prefix and the accession, and then uses meta-resolver APIs to locate the actual DRS server. For example, here are the client resolution steps if the URI is:

drs://drs.42:314159

	The client parses the string to extract the prefix of drs.42 and the accession of 314159, using the first occurrence of a colon (”:”) character after the initial drs:// as a delimiter. (The colon character is not allowed in a Hostname-based DRS URI, making it easy to tell them apart.)

	The client makes API calls to a meta-resolver to look up the URL pattern for the namespace. (See Calling Meta-Resolver APIs for Compact Identifier-Based DRS URIs for details.) The URL pattern is a string containing a {$id} parameter, such as:

https://drs.myexample.org/ga4gh/drs/v1/objects/{$id}

	The client generates a DRS URL from the URL template by replacing {$id} with the accession it extracted in step 1. It then makes a GET request to the DRS server:

GET https://drs.myexample.org/ga4gh/drs/v1/objects/314159

	The client follows any HTTP redirects returned in step 3, in case the resolver goes through an extra layer of redirection.

For performance reasons, DRS clients SHOULD cache the URL pattern returned in step 2, with a suggested 24 hour cache life.

Choosing a URI Style

DRS servers can choose to issue either hostname-based or compact identifier-based DRS URIs, and can be confident that compliant DRS clients will support both. DRS clients must be able to accommodate both URI types. Tradeoffs that DRS server builders, and third parties who need to cite DRS objects in datasets, workflows or elsewhere, may want to consider include:

Table 1: Choosing a URI Style

	Hostname-based	Compact Identifier-based
——————-	—————-	————————–
URI Durability	URIs are valid for as long as the server operator maintains ownership of the published DNS address. (They can of course point that address at different physical serving infrastructure as often as they would like.)	URIs are valid for as long as the server operator maintains ownership of the published compact identifier resolver namespace. (They also depend on the meta-resolvers like identifiers.org/n2t.net remaining operational, which is intended to be essentially forever.)
Client Efficiency	URIs require minimal client logic, and no network requests, to resolve.	URIs require small client logic, and 1-2 cacheable network requests, to resolve.
Security	Servers have full control over their own security practices.	Server operators, in addition to maintaining their own security practices, should confirm they are comfortable with the resolver registry security practices, including protection against denial of service and namespace-hijacking attacks. (See the Appendix: Compact Identifier-Based URIs for more information on resolver registry security.)

DRS Datatypes

DRS v1 supports two types of content:

	a blob is like a file — it’s a single blob of bytes, represented by a DrsObject without a contents array

	a bundle is like a folder — it’s a collection of other DRS content (either blobs or bundles), represented by a DrsObject with a contents array

Read-only

DRS v1 is a read-only API. We expect that each implementation will define its own mechanisms and interfaces (graphical and/or programmatic) for adding and updating data.

Standards

The DRS API specification is written in OpenAPI and embodies a RESTful service philosophy. It uses JSON in requests and responses and standard HTTPS on port 443 for information transport. Optionally, it
supports authentication and authorization using the GA4GH Passport [https://github.com/ga4gh-duri/ga4gh-duri.github.io/tree/master/researcher_ids] standard.

 Encoding DRS IDs

Encoding DRS IDs

In hostname-based DRS URIs, the ID is always percent-encoded to ensure special characters do not interfere with subsequent DRS endpoint calls. As such, “:” is not allowed in the URI and is a convenient way of differentiating from a compact identifier-based DRS URI. Also, if a given DRS service implementation uses compact identifier accessions as their DRS IDs, they must be percent encoded before using them as DRS IDs in hostname-based DRS URIs and subsequent GET requests to a DRS service endpoint.

 <no title>

 The Data Repository Service (DRS) API provides a generic interface to data repositories so data consumers, including workflow systems, can access data objects in a single, standard way regardless of where they are stored and how they are managed. The primary functionality of DRS is to map a logical ID to a means for physically retrieving the data represented by the ID. The sections below describe the characteristics of those IDs, the types of data supported, how they can be pointed to using URIs, and how clients can use these URIs to ultimately make successful DRS API requests. This document also describes the DRS API in detail and provides information on the specific endpoints, request formats, and responses. This specification is intended for developers of DRS-compatible services and of clients that will call these DRS services.

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in RFC 2119 [https://datatracker.ietf.org/doc/html/rfc2119].

 Federation

 	
 Data sharing requires portable data, consistent with the FAIR data principles (findable, accessible, interoperable, reusable). Today’s researchers and clinicians are surrounded by potentially useful data, but often need bespoke tools and processes to work with each dataset. Today’s data publishers don’t have a reliable way to make their data useful to all (and only) the people they choose. And today’s data controllers are tasked with implementing standard controls of non-standard mechanisms for data access.

 	

 Figure 1: there’s an ocean of data, with many different tools to drink from it, but no guarantee that any tool will work with any subset of the data

 <no title>

 The GA4GH Service Registry API specification [https://github.com/ga4gh-discovery/ga4gh-service-registry] allows information about GA4GH-compliant web services, including DRS services, to be aggregated into registries and made available via a standard API. The following considerations should be followed when registering DRS services within a service registry.

	The DRS service attributes returned by /service-info (i.e. id, name, description, etc.) should have the same values as the registry entry for that service.

	The value of the type object’s artifact property should be drs (i.e. the same as it appears in service-info)

	Each entry in a Service Registry must have a url, indicating the base URL to the web service. For DRS services, the registered url must include everything up to
the standardized /ga4gh/drs/v1 path. Clients should be able to assume that:

	Adding /ga4gh/drs/v1/objects/{object_id} to the registered url will hit the DrsObject endpoint

	Adding /ga4gh/drs/v1/service-info to the registered url will hit the Service Info endpoint

Example listing of a DRS API registration from a service registry’s /services endpoint:

[
 {
 "id": "com.example.drs",
 "name": "Example DRS API",
 "type": {
 "group": "org.ga4gh",
 "artifact": "drs",
 "version": "1.3.0"
 },
 "description": "The Data Repository Service (DRS) API ...",
 "organization": {
 "id": "com.example",
 "name": "Example Company"
 },
 "contactUrl": "mailto:support@example.com",
 "documentationUrl": "https://docs.example.com/docs/drs",
 "createdAt": "2021-08-09T00:00:00Z",
 "updatedAt": "2021-08-09T12:30:00Z",
 "environment": "production",
 "version": "1.13.4",
 "url": "https://drs-service.example.com"
 }
]

 <no title>

 This document contains more examples of resolving compact identifier-based DRS URIs than we could fit in the DRS specification or appendix. It’s provided here for your reference as a supplement to the specification.

 <no title>

 Compact identifiers refer to locally-unique persistent identifiers that have been namespaced to provide global uniqueness. See “Uniform resolution of compact identifiers for biomedical data” [https://www.biorxiv.org/content/10.1101/101279v3] for an excellent introduction to this topic. By using compact identifiers in DRS URIs, along with a resolver registry (identifiers.org/n2t.net), systems can identify the current resolver when they need to translate a DRS URI into a fetchable URL. This allows a project to issue compact identifiers in DRS URIs and not be concerned if the project name or DRS hostname changes in the future, the current resolver can always be found through the identifiers.org/n2t.net registries. Together the identifiers.org/n2t.net systems support the resolver lookup for over 700 compact identifiers formats used in the research community, making it possible for a DRS server to use any of these as DRS IDs (or to register a new compact identifier type and resolver service of their own).

We use a DRS URI scheme rather than Compact URIs (CURIEs) [https://en.wikipedia.org/wiki/CURIE] directly since we feel that systems consuming DRS objects will be able to better differentiate a DRS URI. CURIEs are widely used in the research community, and we feel the fact that they can point to a wide variety of entities (HTML documents, PDFs, identities in data models, etc) makes it more difficult for systems to unambiguously identify entities as DRS objects.

Still, to make compact identifiers work in DRS URIs we leverage the CURIE format used by identifiers.org/n2t.net. Compact identifiers have the form:

prefix:accession

The prefix can be divided into a provider_code (optional) and namespace. The accession here is an Ark, DOI, Data GUID, or another issuer’s local ID for the object being pointed to:

[provider_code/]namespace:accession

Both the provider_code and namespace disallow spaces or punctuation, only lowercase alphanumerical characters, underscores and dots are allowed.

Examples [https://n2t.net/e/compact_ids.html] include (from n2t.net):

PDB:2gc4
Taxon:9606
DOI:10.5281/ZENODO.1289856
ark:/47881/m6g15z54
IGSN:SSH000SUA

Tip:

DRS URIs using compact identifiers with resolvers registered in identifiers.org/n2t.net can be distinguished from the hostname-based DRS URIs below based on the required “:” which is not allowed in hostname-based URI.

See the documentation on n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] for much more information on the compact identifiers used there and details about the resolution process.

 <no title>

 A DRS client identifies the DRS URI compact identifier components using the first occurrence of “/” (optional) and “:” characters. These are not allowed inside the provider_code (optional) or the namespace. The “:” character is not allowed in a Hostname-based DRS URI, providing a convenient mechanism to differentiate them. Once the provider_code (optional) and namespace are extracted from a DRS compact identifier-based URI, a client can use services on identifiers.org to identify available resolvers.

Let’s look at a specific example DRS compact identifier-based URI that uses DOIs, a popular compact identifier, and walk through the process that a client would use to resolve it. Keep in mind, the resolution process is the same from the client perspective if a given DRS server is using an existing compact identifier type (DOIs, ARKs, Data GUIDs) or creating their own compact identifier type for their DRS server and registering it on identifiers.org/n2t.net.

Starting with the DRS URI:

drs://doi:10.5072/FK2805660V

with a namespace of “doi”, the following GET request will return information about the namespace:

GET https://registry.api.identifiers.org/restApi/namespaces/search/findByPrefix?prefix=doi

This information then points to resolvers for the “doi” namespace. This “doi” namespace was assigned a namespace ID of 75 by identifiers.org. This “id” has nothing to do with compact identifier accessions (which are used in the URL pattern as {$id} below) or DRS IDs. This namespace ID (75 below) is purely an identifiers.org internal ID for use with their APIs:

GET https://registry.api.identifiers.org/restApi/resources/search/findAllByNamespaceId?id=75

This returns enough information to, ultimately, identify one or more resolvers and each have a URL pattern that, for DRS-supporting systems, provides a URL template for making a successful DRS GET request. For example, the DOI urlPattern is:

urlPattern: "https://doi.org/{$id}"

And the {$id} here refers to the accession from the compact identifier (in this example the accession is 10.5072/FK2805660V). If applicable, a provider code can be supplied in the above requests to specify a particular mirror if there are multiple resolvers for this namespace. In the case of DOIs, you only get a single resolver.

Given this information you now know you can make a GET on the URL:

GET https://doi.org/10.5072/FK2805660V

The URL above is valid for a DOI object but it is not actually a DRS server! Instead, it redirects to a DRS server through a series of HTTPS redirects. This is likely to be common when working with existing compact identifiers like DOIs or ARKs. Regardless, the redirect should eventually lead to a DRS URL that percent-encodes the accession as a DRS ID in a DRS object API call. For a hypothetical example, here’s what a redirect to a DRS API URL might ultimately look like. A client doesn’t have to do anything other than follow the HTTPS redirects. The link between the DOI resolver on doi.org and the DRS server URL below is the result of the DRS server registering their data objects with a DOI issuer.

GET https://drs.example.org/ga4gh/drs/v1/objects/10.5072%2FFK2805660V

IDs in DRS hostname-based URIs/URLs are always percent-encoded to eliminate ambiguity even though the DRS compact identifier-based URIs and the identifier.org’s API do not percent-encode accessions. This was done in order to 1) follow the CURIE conventions of identifiers.org/n2t.net for compact identifier-based DRS URIs and 2) to aid in readability for users who understand they are working with compact identifiers. The general rule of thumb, when using a compact identifier accession as a DRS ID in a DRS API call, make sure to percent-encode it. An easy way for a DRS client to handle this is to get the initial DRS object JSON response from whatever redirects the compact identifier resolves to, then look for the self_uri in the JSON, which will give you the correctly percent-encoded DRS ID for subsequent DRS API calls such as the access method.

 <no title>

 See the documentation on n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] for adding your own compact identifier type and registering your DRS server as a resolver. We document this in more detail in the main specification document.

Now the question is how does a client resolve your newly registered compact identifier for your DRS server? It turns out, whether specific to a DRS implementation or using existing compact identifiers like ARKs or DOIs, the DRS client resolution process for compact identifier-based URIs is exactly the same. We briefly run through process below for a new compact identifier as an example but, again, a client will not need to do anything different from the resolution process documented in “DRS Client Compact Identifier-Based URI Resolution Process - Existing Compact Identifier Provider”.

Now we can issue DRS URI for our data objects like:

drs://mydrsprefix:12345

This is a little simpler than working with DOIs or other existing compact identifier issuers out there since we can create our own IDs and not have to allocate them through a third-party service (see “Issuing Existing Compact Identifiers for Use with Your DRS Server” below).

With a namespace of “mydrsprefix”, the following GET request will return information about the namespace:

GET https://registry.api.identifiers.org/restApi/namespaces/search/findByPrefix?prefix=mydrsprefix

Of course, this is a hypothetical example so the actual API call won’t work, but you can see the GET request is identical to “DRS Client Compact Identifier-Based URI Resolution Process - Existing Compact Identifier Provider”.

This information then points to resolvers for the “mydrsprefix” namespace. Hypothetically, this “mydrsprefix” namespace was assigned a namespace ID of 1829 by identifiers.org. This “id” has nothing to do with compact identifier accessions (which are used in the URL pattern as {$id} below) or DRS IDs. This namespace ID (1829 below) is purely an identifiers.org internal ID for use with their APIs:

GET https://registry.api.identifiers.org/restApi/resources/search/findAllByNamespaceId?id=1829

Like the previous GET request this URL won’t work but you can see the GET request is identical to “DRS Client Compact Identifier-Based URI Resolution Process - Existing Compact Identifier Provider”.

This returns enough information to, ultimately, identify one or more resolvers and each have a URL pattern that, for DRS-supporting systems, provides a URL template for making a successful DRS GET request. For example, the “mydrsprefix” urlPattern is:

urlPattern: "https://mydrs.server.org/ga4gh/drs/v1/objects/{$id}"

And the {$id} here refers to the accession from the compact identifier (in this example the accession is 12345). If applicable, a provider code can be supplied in the above requests to specify a particular mirror if there are multiple resolvers for this namespace.

Given this information you now know you can make a GET on the URL:

GET https://mydrs.server.org/ga4gh/drs/v1/objects/12345

So, compared to using a third party service like DOIs and ARKs, this would be a direct pointer to a DRS server. However, just as with “DRS Client Compact Identifier-Based URI Resolution Process - Existing Compact Identifier Provider”, the client should always be prepared to follow HTTPS redirects.

To summarize, a client resolving a custom compact identifier registered for a single DRS server is actually the same as resolving using a third-party compact identifier service like ARKs or DOIs with a DRS server, just make sure to follow redirects in all cases.

Note: Issuing Existing Compact Identifiers for Use with Your DRS Server

See the documentation on n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] for information about all the compact identifiers that are supported. You can choose to use an existing compact identifier provider for your DRS server, as we did in the example above using DOIs (”DRS Client Compact Identifier-Based URI Resolution Process - Existing Compact Identifier Provider”). Just keep in mind, each provider will have their own approach for generating compact identifiers and associating them with a DRS data object URL. Some compact identifier providers, like DOIs, provide a method whereby you can register in their network and get your own prefix, allowing you to mint your own accessions. Other services, like the University of California’s EZID [https://ezid.cdlib.org/] service, provide accounts and a mechanism to mint accessions centrally for each of your data objects. For experimentation we recommend you take a look at the EZID website that allows you to create DOIs and ARKs and associate them with your data object URLs on your DRS server for testing purposes.

 <no title>

 See the documentation on the n2t.net [https://n2t.net/e/compact_ids.html] and identifiers.org [https://docs.identifiers.org/] meta-resolvers for adding your own compact identifier type and registering your DRS server as a resolver. You can register new prefixes (or mirrors by adding resource provider codes) for free using a simple online form.

Keep in mind, while anyone can register prefixes, the identifiers.org/n2t.net sites do basic hand curation to verify new prefix and resource (provider code) requests. See those sites for more details on their security practices. For more information see

Starting with the prefix for our new compact identifier, let’s register the namespace mydrsprefix on identifiers.org/n2t.net and use 5-digit numeric IDs as our accessions. We will then link this to the DRS server at https://mydrs.server.org/ga4gh/drs/v1/ by filling in the provider details. Here’s what that the registration for our new namespace looks like on identifiers.org [https://registry.identifiers.org/prefixregistrationrequest]:

[image: data-repository-service-schemas/public/img/prefix_register_1.png]Prefix Register 1

[image: data-repository-service-schemas/public/img/prefix_register_2.png]Prefix Register 2

_static/file.png

_static/down-pressed.png

_static/down.png

