
Data Object Service Documentation
Release 0.5.0

David Steinberg

Feb 06, 2019

Contents

1 Schemas for the Data Object Service (DOS) API 3
1.1 Cloud Workstream . 3
1.2 What is DOS? . 3
1.3 Key features . 4
1.4 Implementations . 4
1.5 More information . 4

2 Quickstart 5
2.1 Installing . 5
2.2 Running the client and server . 5
2.3 Further reading . 6

3 Data Object Service Demonstration Server 7

4 DOS Python HTTP Client 9

5 Tools for DOS Implementations 11
5.1 Dynamic /swagger.json with Chalice . 11
5.2 Compliance testing . 11

6 Contributor’s Guide 13
6.1 Installing . 13
6.2 Documentation . 13
6.3 Tests . 13
6.4 Schema architecture . 14
6.5 Releases . 14
6.6 Code contributions . 14

7 Indices and tables 15

i

ii

Data Object Service Documentation, Release 0.5.0

Welcome to the documentation for the Data Object Service Schemas! These schemas present an easy-to-implement
interface for publishing and accessing data in heterogeneous storage environments. It also includes a demonstration
client and server to make creating your own DOS implementation easy!

Contents 1

Data Object Service Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Schemas for the Data Object Service (DOS) API

The Global Alliance for Genomics and Health is an international coalition formed to enable the sharing of genomic
and clinical data. This collaborative consortium takes place primarily via GitHub and public meetings.

1.1 Cloud Workstream

The Data Working Group concentrates on data representation, storage, and analysis, including working with plat-
form development partners and industry leaders to develop standards that will facilitate interoperability. The Cloud
Workstream is an informal, multi-vendor working group focused on standards for exchanging Docker-based tools and
CWL/WDL workflows, execution of Docker-based tools and workflows on clouds, and abstract access to cloud object
stores.

1.2 What is DOS?

This proposal for a DOS release is based on the schema work of Brian W. and others from OHSU along with work by
UCSC. It also is informed by existing object storage systems such as:

• GNOS (as used by PCAWG)

• ICGC Storage (as used to store data on S3, see overture-stack/score)

• Human Cell Atlas Storage (see HumanCellAtlas/data-store)

• NCI GDC Storage

• Keep by Curoverse (see curoverse/arvados)

The goal of DOS is to create a generic API on top of these and other projects, so workflow systems can access data in
the same way regardless of project.

3

http://genomicsandhealth.org/
http://ga4gh.org/#/
http://annaisystems.com/
https://dcc.icgc.org/pcawg
https://dcc.icgc.org/icgc-in-the-cloud/aws
https://github.com/overture-stack/score
https://dss.staging.data.humancellatlas.org/
https://github.com/HumanCellAtlas/data-store
https://gdc.cancer.gov
https://arvados.org/
https://github.com/curoverse/arvados

Data Object Service Documentation, Release 0.5.0

1.3 Key features

1.3.1 Data Object management

This section of the API focuses on how to read and write Data Objects to cloud environments and how to join them
together as Data Bundles. Data Bundles are simply a flat collection of one or more files. This section of the API
enables:

• create/update/delete a file

• create/update/delete a Data Bundle

• register UUIDs with these entities (an optionally track versions of each)

• generate signed URLs and/or cloud specific object storage paths and temporary credentials

1.3.2 Data Object queries

A key feature of this API beyond creating/modifying/deletion files is the ability to find Data Objects across cloud
environments and implementations of DOS. This section of the API allows users to query by Data Bundle or file
UUIDs which returns information about where these Data Objects are available. This response will typically be used
to find the same file or Data Bundle located across multiple cloud environments.

1.4 Implementations

There are currently a few experimental implementations that use some version of these schemas.

• DOS Connect observes cloud and local storage systems and broadcasts their changes to a service that presents
DOS endpoints.

• DOS Downloader is a mechanism for downloading Data Objects from DOS URLs.

• dos-gdc-lambda presents data from the GDC public REST API using the Data Object Service.

• dos-signpost-lambda presents data from a signpost instance using the Data Object Service.

1.5 More information

• Global Alliance for Genomics and Health

• GA4GH Cloud Workstream

4 Chapter 1. Schemas for the Data Object Service (DOS) API

https://github.com/ohsu-comp-bio/dos_connect
https://github.com/david4096/dos-downloader
https://github.com/david4096/dos-gdc-lambda
https://github.com/david4096/dos-signpost-lambda
http://genomicsandhealth.org
http://ga4gh.cloud

CHAPTER 2

Quickstart

2.1 Installing

Installing is quick and easy. First, it’s always good practice to work in a virtualenv:

$ virtualenv venv
$ source venv/bin/activate

Then, install from PyPI:

$ pip install ga4gh-dos-schemas

Or, to install from source:

$ git clone https://github.com/ga4gh/data-object-service-schemas.git
$ cd data-object-service-schemas
$ python setup.py install

2.2 Running the client and server

There’s a handy command line hook for the server:

$ ga4gh_dos_server

and for the client:

$ ga4gh_dos_demo

(The client doesn’t do anything yet but will soon.)

5

Data Object Service Documentation, Release 0.5.0

2.3 Further reading

• gdc_notebook.ipynb outlines examples of how to access data with this tool.

• demo.py demonstrates basic CRUD functionality implemented by this package.

6 Chapter 2. Quickstart

https://github.com/ga4gh/data-object-service-schemas/blob/master/python/examples/gdc_notebook.ipynb
https://github.com/ga4gh/data-object-service-schemas/blob/master/python/examples/gdc_dos.py

CHAPTER 3

Data Object Service Demonstration Server

7

Data Object Service Documentation, Release 0.5.0

8 Chapter 3. Data Object Service Demonstration Server

CHAPTER 4

DOS Python HTTP Client

9

Data Object Service Documentation, Release 0.5.0

10 Chapter 4. DOS Python HTTP Client

CHAPTER 5

Tools for DOS Implementations

The ga4gh.dos package contains some utilities that can help you develop a compliant DOS resolver.

5.1 Dynamic /swagger.json with Chalice

If you’re using Chalice, you can expose a subset of the Data Object Service schema using ga4gh.dos.schema.
from_chalice_routes():

from chalice import Chalice
app = Chalice(...)

@app.route('/swagger.json')
def swagger():

return ga4gh.dos.schema.from_chalice_routes(app.routes)

With the above code, a GET request to /swagger.json will return a schema in the Swagger / OpenAPI 2 format
that correctly lists only the endpoints that are exposed by your app.

If you have a different basePath, you can also specify that:

@app.route('/swagger.json')
def swagger():

return ga4gh.dos.schema.from_chalice_routes(app.routes, base_path='/api')

5.2 Compliance testing

This package contains a testing suite (AbstractComplianceTest) that streamlines testing implementations of
the Data Object Service for compliance with the DOS schema.

This test suite is meant to supplement, and not replace, an existing test suite. It does not:

• test authentication

11

Data Object Service Documentation, Release 0.5.0

• test health of the service(s) underpinning an implementation

• test any endpoints not defined in the Data Object Service schema

12 Chapter 5. Tools for DOS Implementations

CHAPTER 6

Contributor’s Guide

6.1 Installing

To install for development, install from source (and be sure to install the development requirements as well):

$ git clone https://github.com/ga4gh/data-object-service-schemas.git
$ cd data-object-service-schemas
$ python setup.py develop
$ pip install -r requirements.txt

6.2 Documentation

We use Sphinx for our documentation. You can generate an HTML build like so:

$ cd docs/
$ make html

You’ll find the built documentation in docs/build/.

6.3 Tests

To run tests:

$ nosetests python/

The Travis test suite also tests for PEP8 compliance (checking for all errors except line length):

$ flake8 --select=E121,E123,E126,E226,E24,E704,W503,W504 --ignore=E501 python/

13

Data Object Service Documentation, Release 0.5.0

6.4 Schema architecture

The canonical, authoritative schema is located at openapi/data_object_service.swagger.yaml. All
schema changes must be made to the Swagger schema, and all other specifications (e.g. SmartAPI, OpenAPI 3) are
derived from it.

6.4.1 Building documents

To generate the OpenAPI 3 and SmartAPI descriptions, install swagger2openapi then run:

$ make schemas

6.5 Releases

New versions are released when ga4gh.dos.__version__ is incremented, a commit is tagged (either through a
release or manually), and the tagged branch builds successfully on Travis. When both conditions are met, Travis will
automatically upload the distribution to PyPI.

If ga4gh.dos.__version__ is not incremented in a new release, the build may appear to complete successfully,
but the package will not be uploaded to PyPI as the distribution will be interpreted as a duplicate release and thus
refused.

The process above is currently managed by david4096. To transfer this responsibility, ownership of the PyPI package
must be transferred to a new account, and their details added to .travis.yml as described above.

Note that this repository will not become compliant with Semantic Versioning until version 1.0 - until then, the API
should be considered unstable.

Documentation is updated independently of this release cycle.

6.6 Code contributions

We welcome code contributions! Feel free to fork the repository and submit a pull request. Please refer to this
contribution guide for guidance as to how you should submit changes.

Data Object Service Schemas is licensed under the Apache 2.0 license. See LICENSE for more info.

14 Chapter 6. Contributor’s Guide

https://github.com/Mermade/swagger2openapi
https://docs.travis-ci.com/user/deployment/pypi/
https://github.com/david4096
https://github.com/ga4gh/ga4gh-schemas/blob/master/CONTRIBUTING.rst
https://github.com/ga4gh/data-object-service-schemas/blob/master/LICENSE

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

	Schemas for the Data Object Service (DOS) API
	Cloud Workstream
	What is DOS?
	Key features
	Implementations
	More information

	Quickstart
	Installing
	Running the client and server
	Further reading

	Data Object Service Demonstration Server
	DOS Python HTTP Client
	Tools for DOS Implementations
	Dynamic /swagger.json with Chalice
	Compliance testing

	Contributor’s Guide
	Installing
	Documentation
	Tests
	Schema architecture
	Releases
	Code contributions

	Indices and tables

